大家好,萌萌老師又和大家見面了,這節課萌萌老師將緊接上節的內容為大家介紹電容在電路中常見使用方法~
在正式介紹電容在電路中的使用方法之前,萌萌老師先帶領大家來熟悉一下電路主板上常見的一些電容分類。
上面提到這些電容并不是電容家族的全部,只是常用語主板的一些電容,除了這些還有其他各種用于電力、電子設備的電容,例如空氣電容、可變電容、半可變電容、紙介電容、油浸電容等等……
電容的常見使用方法
作為無源元件之一的電容,其主要應用在以下幾個領域。
電源電路
應用于電源電路,實現旁路、去藕、濾波和儲能的作用。
旁路電容電路
旁路電容是為本地器件提供能量的儲能器件,它能使穩壓器的輸出均勻化,降低負載需求。就像小型可充電電池一樣,旁路電容能夠被充電,并向器件進行放電。
為盡量減少阻抗,旁路電容要盡量靠近負載器件的供電電源管腳和地管腳。這能夠很好地防止輸入值過大而導致的地電位抬高和噪聲。
地彈是地連接處在通過大電流毛刺時的電壓降。
去耦電容電路
去藕電容,又稱解藕。從電路來說,總是可以區分為驅動的源和被驅動的負載。如果負載電容比較大,驅動電路要把電容充電、放電,才能完成信號的跳變,在上升沿比較陡峭的時候,電流比較大,這樣驅動的電流就會吸收很大的電源電流,由于電路中的電感,電阻(特別是芯片管腳上的電感,會產生反彈),這種電流相對于正常情況來說實際上就是一種噪聲,會影響前級的正常工作,這就是所謂的“耦合”。
去藕電容就是起到一個“電池”的作用,滿足驅動電路電流的變化,避免相互間的耦合干擾。將旁路電容和去藕電容結合起來將更容易理解。旁路電容實際也是去藕合的,只是旁路電容一般是指高頻旁路,也就是給高頻的開關噪聲提高一條低阻抗泄防途徑。
高頻旁路電容一般比較小,根據諧振頻率一般取0.1μF、0.01μF等;而去耦合電容的容量一般較大,可能是10μF或者更大,依據電路中分布參數、以及驅動電流的變化大小來確定。旁路是把輸入信號中的干擾作為濾除對象,而去耦是把輸出信號的干擾作為濾除對象,防止干擾信號返回電源。這應該是他們的本質區別。
濾波從理論上(即假設電容為純電容)說,電容越大,阻抗越小,通過的頻率也越高。但實際上超過1μF的電容大多為電解電容,有很大的電感成份,所以頻率高后反而阻抗會增大。有時會看到有一個電容量較大電解電容并聯了一個小電容,這時大電容通低頻,小電容通高頻。電容的作用就是通高阻低,通高頻阻低頻。電容越大低頻越容易通過,電容越小高頻越容易通過。具體用在濾波中,大電容(1000μF)濾低頻,小電容(20pF)濾高頻。曾有網友形象地將濾波電容比作“水塘”。
由于電容的兩端電壓不會突變,由此可知,信號頻率越高則衰減越大,可很形象的說電容像個水塘,不會因幾滴水的加入或蒸發而引起水量的變化。它把電壓的變動轉化為電流的變化,頻率越高,峰值電流就越大,從而緩沖了電壓。濾波就是充電,放電的過程。
儲能型電容器通過整流器收集電荷,并將存儲的能量通過變換器引線傳送至電源的輸出端。電壓額定值為40~450VDC、電容值在220~150000μF之間的鋁電解電容器(如EPCOS公司的B43504或B43505)是較為常用的。根據不同的電源要求,器件有時會采用串聯、并聯或其組合的形式,對于功率級超過10KW的電源,通常采用體積較大的罐形螺旋端子電容器。
應用于信號電路,主要完成耦合、振蕩/同步及時間常數的作用
耦合舉個例子來講,晶體管放大器發射極有一個自給偏壓電阻,它同時又使信號產生壓降反饋到輸入端形成了輸入輸出信號耦合,這個電阻就是產生了耦合的元件,如果在這個電阻兩端并聯一個電容,由于適當容量的電容器對交流信號較小的阻抗,這樣就減小了電阻產生的耦合效應,故稱此電容為去耦電容。
振蕩/同步包括RC、LC振蕩器及晶體的負載電容都屬于這一范疇。
時間常數這就是常見的R、C串聯構成的積分電路。當輸入信號電壓加在輸入端時,電容(C)上的電壓逐漸上升。而其充電電流則隨著電壓的上升而減小。電流通過電阻(R)、電容(C)的特性通過下面的公式描述:i=(V/R)e-(t/CR)
通過萌萌老師的講解,大家是不是對電容在電路中初步用法有了一定的了解呢?在下一講當中,萌萌老師將針對常用電容器進行講解,感興趣的同學們要及時關注哦
~~~~~~