91视频免费?看_蜜芽MY188精品TV在线观看_国产免费无遮挡在线观看视频_深夜国产_亚洲精品欧洲精品_欧美黑人粗暴多交

微軟公司宣布不再支持你正在使用的 IE瀏覽器,這會嚴重影響瀏覽網頁,請使用微軟最新的Edge瀏覽器
廠商專區
產品/技術
應用分類

電源設計小貼士 | 跳出 LLC 串聯諧振轉換器的思維定式

2025-05-20 15:14 來源:德州儀器(TI) 編輯:電源網

本文屬于德州儀器“電源設計小貼士”系列技術文章,將主要討論 LLC-SRC 設計優化面臨的挑戰及解決方案,探討如何跳出 LLC 串聯諧振轉換器思維定式,提供全新的解決思路。

十幾年來,電源行業廣泛采用了圖 1 中所示的電感器-電感器-電容器 (LLC) 串聯諧振轉換器 (LLC-SRC) 作為低成本、高效率的隔離式功率級,其中包含兩個諧振電感器(兩個“L”:Lm 和 Lr)和一個諧振電容器(一個“C”:Cr)。LLC-SRC 器件具有軟開關特性,沒有復雜的控制方案。得益于軟開關特性,該器件支持使用額定電壓較低的元件,并可提高效率。該器件采用簡單的控制方案,即具有 50% 固定占空比的變頻調制方案,與相移全橋轉換器等用于其他軟開關拓撲的控制器相比,所需的控制器成本更低。

圖 1. LLC-SRC

LLC-SRC 設計優化的兩大挑戰

盡管 LLC-SRC 的效率可以比硬開關反激式和正激式轉換器高很多,但如果要實現最佳的效率,仍然存在一些設計挑戰。

首先,在 LLC-SRC 設計中,為了實現足夠寬的可控范圍,兩個諧振電感器之比 (Lm/Lr) 可能必須小于 10。同時,需要 Lm 具有較大的電感,以便降低循環電流,因此需要保持高 Lr 電感以確保諧振電感比值低。

值得注意的是,串聯諧振電感器 Lr 中的電流完全是交流電,沒有任何直流分量,這意味著磁通密度變化很大(即 ΔB 很高)。高 ΔB 意味著與交流相關的電感器損耗也很高。如果電感器繞在鐵氧體磁芯上,磁芯空氣間隙附近的邊緣效應會產生較高的繞組損耗。

Lr 電感高,則意味著電感器匝數較多、交流繞組損耗較大。因此,許多 LLC-SRC 設計都對諧振電感器采用鐵粉磁芯,在繞組損耗和磁芯損耗之間進行權衡。然而,高 ΔB 會在諧振電感器上產生相當大的損耗:高繞組損耗或高磁芯損耗。

LLC-SRC 設計的第二個挑戰是如何合理優化同步整流器 (SR) 控制。LLC-SRC 整流器電流傳導時序取決于負載條件和開關頻率。最有前景的 LLC-SRC SR 控制方法是檢測 SR 場效應晶體管 (FET) 漏源電壓 (VDS),并在 VDS 低于或高于特定電平時開啟和關閉 SR。VDS 檢測方法需要毫伏級的精度,因此只能在集成電路中實現。自驅動或其他低成本 SR 控制方案不適用于 LLC-SRC,因為此類器件采用帶電容負載的電流饋入型輸出配置。因此,LLC-SRC SR 控制器電路的成本通常高于其他拓撲的成本。

改良版 CLL-MRC

為了解決這兩個挑戰(高電感器損耗和 SR 控制),同時保持諧振轉換器所能提供的大部分優勢,請考慮使用改良版 CLL 多諧振轉換器 (CLL-MRC),如圖 2 所示。

圖 2. 改良版 CLL-MRC

與所有三個諧振元件(一個電容器和兩個電感器)都位于輸入側的 CLL-MRC 不同,改良版 CLL-MRC 將一個電感器從輸入側移動到輸出側,并將電感器放置在整流器 Lo 之后,如圖 2 所示。這種修改允許諧振電感器上含有直流電流,這意味著 ΔB 更小,磁損耗也可能更低。

圖 3 展示了改良版 CLL-MRC 的工作原理,其中 fsw 是轉換器開關頻率,而 fr1 = {2π[Cr (Lr1 //Lr2 )] 0.5} -1 是兩個諧振頻率的其中之一。當 fsw 低于 fr1 時,輸出繞組電流在開關周期結束前下降到零,這一點與 LLC-SRC 中的輸出繞組電流類似?,F在,輸出端有一個電感器。一組簡單的電容器和電阻器即可檢測輸出電感器電壓。每次出現較大的電壓變化率 (dV/dt) 時,便是開啟或關閉 SR 的時機。因此,SR 控制方案的成本低于 VDS 檢測方案。

當 fsw 高于 fr1 時,輸出電感器電流會處于連續導通模式。換言之,與 LLC-SRC 相比,ΔB 減小,電感器交流損耗可能大幅減小,轉換器效率可能提高。

圖 3. 改良版 CLL-MRC 的重要波形:fsw < fr1(左),fsw > fr1(右)

為了驗證這些性能假設,我構建了一個 LLC-SRC 和另一個具有完全相同元件和參數的改良版 CLL-MRC 功率級。兩者唯一的區別是 72μH 電感器用作 LLC-SRC 諧振電感器,1μH 電感器用作改良版 CLL-MRC 輸出電感器。

圖 4 顯示了兩個功率級的效率測量結果。當輸入電壓較低時,fsw 小于 fr1,因此改良版 CLL-MRC 中的 Lo 電流仍處于不連續導通模式,并具有較大的 ΔB。因此,在這種運行條件下,改良版 CLL-MRC 沒有效率優勢。

當輸入電壓升高時,fsw 大于 fr1,Lo 電流處于連續導通模式。使用 430V 輸入時,改良版 CLL-MRC 的效率比 LLC-SRC 高 1%。這一比較表明,如果將改良版 CLL-MRC 設計為始終在高于 fr1 的頻率下運行,則其在整個范圍內的效率性能可能優于 LLC-SRC。

圖 4. 不同輸入電壓電平下的轉換器效率:改良版 CLL-MRC(頂部),LLC-SRC(底部)

結語

LLC-SRC 確實是出色的拓撲,可提供許多吸引人的特性。但根據應用的不同,其可能并不是最佳解決方案。為了實現更高的效率和更低的電路成本,有時需要跳出思維定式。

德州儀器“電源設計小貼士”系列技術文章由德州儀器專家創建并撰寫,旨在深入剖析當前電源設計普遍面臨的難題,并提供一系列切實可行的解決方案和創新設計思路,幫助設計人員更好應對電源設計挑戰,助力設計更加高效、可靠。

關于德州儀器

德州儀器(TI)(納斯達克股票代碼:TXN)是一家全球性的半導體公司,從事設計、制造和銷售模擬和嵌入式處理芯片,用于工業、汽車、個人電子產品、企業系統和通信設備等市場。我們致力于通過半導體技術讓電子產品更經濟實用,讓世界更美好。如今,每一代創新都建立在上一代創新的基礎上,使我們的技術變得更可靠、更經濟、更節能,從而實現半導體在電子產品領域的廣泛應用。登陸 TI.com.cn 了解更多詳情。

商標

所有注冊商標和其他商標歸各自所有者所有。

聲明:本內容為作者獨立觀點,不代表電源網。本網站原創內容,如需轉載,請注明出處;本網站轉載的內容(文章、圖片、視頻)等資料版權歸原作者所有。如我們采用了您不宜公開的文章或圖片,未能及時和您確認,避免給雙方造成不必要的經濟損失,請電郵聯系我們,以便迅速采取適當處理措施;歡迎投稿,郵箱∶editor@netbroad.com。

微信關注
技術專題 更多>>
技術專題之EMC
技術專題之PCB

頭條推薦

電子行業原創技術內容推薦
客服熱線
服務時間:周一至周五9:00-18:00
微信關注
獲取一手干貨分享
免費技術研討會
editor@netbroad.com
400-003-2006
主站蜘蛛池模板: 察雅县| 新疆| 鲜城| 调兵山市| 舟曲县| 隆化县| 永济市| 沙田区| 东平县| 平泉县| 韩城市| 宜良县| 永年县| 岐山县| 汉川市| 长乐市| 新闻| 龙门县| 东乡族自治县| 龙里县| 邓州市| 海原县| 咸阳市| 新绛县| 子洲县| 安溪县| 曲周县| 若羌县| 晋江市| 武安市| 确山县| 福清市| 屏山县| 滕州市| 永善县| 佛坪县| 都昌县| 新竹县| 额济纳旗| 营口市| 呈贡县|