91视频免费?看_蜜芽MY188精品TV在线观看_国产免费无遮挡在线观看视频_深夜国产_亚洲精品欧洲精品_欧美黑人粗暴多交

微軟公司宣布不再支持你正在使用的 IE瀏覽器,這會嚴重影響瀏覽網頁,請使用微軟最新的Edge瀏覽器
廠商專區
產品/技術
應用分類

認識反激中的RCD吸收電路

2016-10-12 17:22 來源:致遠電子 編輯:電源網

反激式開關電源結構簡單,應用廣泛,但其變壓器漏感大,開關管存在電壓尖峰,在大部分低功率應用場合都會采用簡單易實現的RCD鉗位電路來減緩電壓尖峰,這里將簡單介紹RCD電路的工作原理以及如何確定鉗位電路中的參數。

單端反激式開關電源具有結構簡單,輸入輸出電氣隔離,輸入電壓范圍寬,易于實現多路輸出,可靠性高,成本低等優點而廣泛應用于中小功率場合。但由于反激變壓器漏感影響,其功率開關管在關斷時將引起電壓尖峰,必須用鉗位電路加以抑制,因此RCD鉗位電路以其簡潔易實現多用于小功率場合。圖1和圖2分別為反激電路中的RCD鉗位電路和電容C兩端的電壓波形。

2016101212

1反激中的RCD鉗位電路

2016101213

圖2電容兩端波形

1.   漏感的抑制

變壓器的漏感是不可消除的,但可以通過合理的電路設計和繞制使之減小。設計和繞制是否合理,對漏感的影響是很明顯的。采用合理的方法,可將漏感控制在初級電感的2%左右。

設計時應綜合變壓器磁芯的選擇和初級匝數的確定,盡量使初級繞組可緊密繞滿磁芯骨架一層或多層。繞制時繞線要盡量分布得緊湊、均勻,這樣線圈和磁路空間上更接近垂直關系,耦合效果更好。初級和次級繞線也要盡量靠得緊密。

勵磁電感LM同理想變壓器并聯,漏感LK同勵磁電感串聯,變壓器中漏感能量不能傳遞到副邊,若不采取措施,漏感將通過寄生電容釋放能量,引起電壓過沖和振蕩,引起EMI。為抑制其影響,可在變壓器初級并聯RCD鉗位電路。

2.   鉗位電路的工作原理  

引入RCD鉗位電路,目的是消耗漏感能量,但不能消耗主勵磁電感能量,否則會降低電路效率,因此在電路設計調試過程中要選擇恰當的R及C的值,以使其剛好消耗掉漏感能量。下面將分析其工作原理。

當開關管Q關斷時,變壓器初級線圈電壓反向,同時漏感LK釋放能量直接對C進行充電,電容C電壓迅速上升,二極管D截止后C通過R進行放電

若C值較大,C上電壓緩慢上升,副邊反激過沖小,變壓器能量不能迅速傳遞到副邊;若C值特別大,電壓峰值小于副邊反射電壓,則鉗位電容上電壓將一直保持在副邊反射電壓附近,即鉗位電阻變為負載,一直在消耗磁芯能量,此時電容兩端波形如圖3(a)所示。

2016101214

圖3電容兩端波形

若RC過小,則電容C充電較快,且C將通過電阻R很快放電,整個過程中漏感能量消耗很快,在Q開通前鉗位電阻則成為變壓器的負載,消耗變壓器存儲的能量,降低效率,電容C兩端波形如圖3(b)所示。

若RC值取值比較合適,到開關管Q再次開通時,電容C上電壓剛好放到接近于變壓器副邊反射的電壓,此時鉗位效果較好,電容C兩端波形如圖3(c)所示。

3.   總結

開關管漏極上的電壓由三部分組成:電源電壓,反激感應電壓,漏感沖擊電壓。 吸收電路,一定要讓他只吸收漏感沖擊電壓,而不要對另外電壓起作用,那樣不僅會增大吸收電阻的負擔,還會降低開關電源的效率。

首先確定吸收電路所要消耗的功率:

由于吸收電容的另一端是接在正電源上的,所以它的電壓只有兩部分:反激感應電壓,漏感沖擊電壓。電容C兩端電壓為VC,變壓器漏感為LK,匝比為n,則漏感中電流的下降斜率為:2016101215

可以得出漏感電流的下降時間tS為:2016101216

其中ipk為變壓器初級峰值電流。

鉗位電容的電壓VC應在變換器輸入電壓最低、滿載時確定,一旦確定了VC,則可計算出吸收電路消耗的功率為:2016101217

其中fS為變換器的開關頻率。

確定了吸收電路消耗的功率后,則可確定鉗位電阻的大小:2016101218

在開關管開關過程中,鉗位電容C兩端電壓變化量為ΔVC,通常可根據VC取合適的ΔVC,由此可進一步確定鉗位電容大小:2016101219

最后,對于鉗位電容兩端的電壓VC根據變壓器反射電壓nVO確定,通常取2~2.5倍即可,取值過小會引起較大損耗。RCD鉗位電路的計算只是確定R與C值的數量級,其具體參數可根據實際測試波形做調整,以達到最佳效果。

聲明:本內容為作者獨立觀點,不代表電源網。本網站原創內容,如需轉載,請注明出處;本網站轉載的內容(文章、圖片、視頻)等資料版權歸原作者所有。如我們采用了您不宜公開的文章或圖片,未能及時和您確認,避免給雙方造成不必要的經濟損失,請電郵聯系我們,以便迅速采取適當處理措施;歡迎投稿,郵箱∶editor@netbroad.com。

相關閱讀

微信關注
技術專題 更多>>
技術專題之EMC
技術專題之PCB

頭條推薦

電子行業原創技術內容推薦
客服熱線
服務時間:周一至周五9:00-18:00
微信關注
獲取一手干貨分享
免費技術研討會
editor@netbroad.com
400-003-2006
主站蜘蛛池模板: 青冈县| 鹤岗市| 利津县| 宣武区| 漳州市| 北海市| 东方市| 朝阳区| 柳州市| 平塘县| 繁昌县| 额敏县| 深泽县| 安平县| 乐至县| 页游| 文登市| 安化县| 廉江市| 军事| 新化县| 仪陇县| 白河县| 丹江口市| 阿巴嘎旗| 黄大仙区| 西和县| 浙江省| 长顺县| 泸定县| 邯郸市| 石河子市| 策勒县| 吉木乃县| 安塞县| 开阳县| 缙云县| 交口县| 麻城市| 花莲市| 梓潼县|