由于是第一次發帖 希望各位大神盡量吐槽,點評,扔雞蛋 、砸磚頭(限金磚,不可以砸人)、小李不勝感激萬分感謝!
做電源RD的,很多時候我們需要耐心、認真、細心、謹慎!
下面我就分享我一個最近做過的項目吧。
挑戰反激無PFC150W
由于是第一次發帖 希望各位大神盡量吐槽,點評,扔雞蛋 、砸磚頭(限金磚,不可以砸人)、小李不勝感激萬分感謝!
做電源RD的,很多時候我們需要耐心、認真、細心、謹慎!
下面我就分享我一個最近做過的項目吧。
挑戰反激無PFC150W
分享其它論壇的資料,覺得很好,這些資料也在后續的調試EMC中 使用了部分大招(以下內容源于其它電源論壇,一字不漏拷貝,如有疑問,能力范圍內解釋)
F1:保險管的壽命受輸入浪涌電壓和浪涌電流的雙重影響,應該盡可能采用慢恢復型保險管,一般是按照最大輸入電流的兩至三倍選取。AC輸入時,浪涌電壓的影響可能要嚴重些。電池輸入(低壓),如果輸入端抑制不足,浪涌電流對保險管的影響可能要嚴重些。AC輸入時,在工業場合,浪涌電壓也遠比民用場合嚴重,這時防雷器件(參數及結構配置)的設計對保險管的影響尤其突出,必要時還要采用雙(三)保險。相關設計過程可以參考專門針對防雷電路、浪涌電流抑制電路的設計文獻。單保險管要接在L線上,且玻璃管引線封裝最好增加一層熱縮套管,并且在PCB板上標明容量。
RT1:熱敏電阻的主要作用是抑制輸入浪涌電流,RT1過大,發熱嚴重。RT1過小,可能會影響到保險管和輸入電解電容的壽命。輸入沖擊電流一般是硬性指標,選擇RT1時一定要仔細的核實最大沖擊電流限制值,如果沒有給出這項要求,可以參考同等功率級別的其他類型產品。在全密封條件下,RT的發熱可能會非常嚴重。另外,如果產品要求低溫啟動測試,RT阻值會變得相當大,很可能導致產品無法正常起機。
X電容:60W的產品,采用0.47uF的X電容,比較保險。換句話說,30W的產品,應該采用0.22uFX電容,120W的產品采用1uF的X電容。盡管這種方法沒有什么科學依據,但是確實屢試不爽。如果你喜歡比較有挑戰性的工作,那就另當別論了。X電容與Y電容不同,X電容容量大一點也不會讓其他地方變得更加惡劣。在成本不是主要因素的情況下,對自己好一點,多留條活路。另外,在圖①中,絕大部分人并不認可C4作用,此處存在了很大爭議性。 Y電容:Y電容的配置有兩個的,也有四個的;有102的,也有222、472的,有串磁珠的,也有串電阻的,只要EMI都能過,只要泄露電流沒超,都是萬歲!總之五花八門,千奇百怪。這也反映出人們內心對于Y電容充滿深深的恐懼。其實Y電容并沒有錯,性能也較為優良,罪魁禍首都在于磁性材料(共模電感、變壓器)及接地方式,后續分析。
MOV1:壓敏電阻的計算方式并沒有統一標準,一旦對實際情況估算錯誤(擊穿電壓偏低),反而會對產品造成嚴重的危害。在防雷要求不高的民用產品中,一般采用14K471居多,工業場合一般都在500V以上,如14K511,14K561等等。如果你不了解產品的真實用電環境(非居民小區用電),要盡量避免使用500V以下的壓敏電阻。不同的行業,采取的防雷措施不盡相同,論壇上也討論較少,一定要認真仔細的研究,特別是與多個保險管的配置方面。另外,配置防雷管后,耐壓測試時往往會出現誤動作,這也是讓人頭痛的問題。MOV1需要增加熱縮套管。
DB1:小功率產品,選型比較簡單。從散熱的角度考慮,寬范圍60W產品,整流器的最低規格不應該低于2A。在成本不苛刻的條件下,一般采用4A即可。 對于某些特殊場合,如存在瞬態高浪涌電壓,整流器的規格應該進一步增大。有種情況很少見(但確實有存在),有部分工程師選擇輸入電解電容時,會選擇超大的容量(可能是量不大,又是自家用),而浪涌抑制(熱敏)電阻的規格卻特別小。這時候強大的沖擊電流會對保險管和整流器形成致命的威脅。專業的電源制造公司不會出現這種情況,而非專業制造商,在開發系統配套產品時,由于開發人員經驗不足,又缺乏嚴謹的測試規范,而忽略這些潛在的隱患。
共模電感:上面分別給出了三種配置,方案①,這種配置比較多。我們經常看到的情況是:前級一個¢8~¢16的小磁環(30~1000uH),后級采用一個¢20~¢25的大磁環(15~30mH),前級作用在高頻,后級低頻,高低搭配剛好合適。方案②,這種情況也較為常見,前后兩個一模一樣的共模線圈,非常美觀。采用這種配置時,為了保證較好的濾波效果(降低分布電容),每一級的電感量(匝數)不能太高。這樣不僅會降低共模電感的分布電容,繞制工藝也會相對簡單,而且美觀,就是成本較高。方案③,一般對EMI要求較低的產品較多使用,低成本EE型共模電感最為常見。部分對成本要求苛刻的產品中,不少人也會采用單個¢18~25左右的磁環來設計,這需要開發人員具備足夠的經驗及技巧。共模電感的材質、形狀、繞制工藝對濾波效果影響較大,而且EMI濾波元件配置與整機結構也有很大的關系。
很多人不曉得如何去計算共模電感值,下面是一種參考方法(適用于中小功率)。
100KHZ------30mH
1.0MHZ------3.0mH
10MHZ-------300uH
100MHZ------30uH
5.0MHZ------600uH
30MHZ-------100uH 在傳導測試時,3*F,1MHZ,5MHZ,20~30MHZ這四個點容易出問題。
注:1、這種方法,只具有規律性,而沒有科學性;
2、共模電感的材質、形狀、繞制工藝對其濾波效果影響非常大;
3、共模電感不會飽和(對稱繞制),但會產生較高的浪涌電壓;
4、共模磁環,最好只繞兩層,在磁環繞制工藝方面建議多下點功夫;
5、共模濾波的設計原則是如何讓其更有效
對于整改EMC,X電容,Y電容,共模的感量設計真的很多是很實用的 還有雷擊 浪涌 這個資料很好,實用~
版本0的X電容就是474+224,Y電容用的就是2個Y串聯。
圖片是調試的時候拍的,去年的事情了,版本0到此over,接下來開始版本1的調試及問題點。
版本1的散熱片已經做了這樣的處理,橋堆GBU封裝 獨立散熱片 輸出同步整流mosfTO-220封裝 獨立散熱片 主功率mosf也是獨立散熱片 而且散熱面積是如此的“奢侈”~~其結果還是如上圖結果~
據版本殘留物發現 之前有打樣純銅今的散熱片來處理散熱問題 可想而知 這個熱問題是如此的棘手~
然而從溫度數據可以發現 并不是只有加散熱片的器件熱 看看變壓器 磁環 電解電容 限流電阻 還有其它 難道這在熱設計分布不均勻或是均勻?
來不及處理驗證這些問題的時候,公司另一個項目工程師有項目外出測試輻射(公司沒有輻射儀),借此機會也一起外出測試一下 看看結果回來再做進一步處理。然而:(只上傳最后測試的結果)
要不就是不過 要不就是余量不足~
當時項目開案的時候 因為某些原因 具體原因不詳 后來案子處于呆滯狀態 雖然呆滯 但是一有空余時間 還是馬上分析處理問題。
從第三方測試機構回來后 拿著余量不足的機子 再次做了評估,如圖 MOSF D極穿了電阻 還在D-S極加P 可想而知 這個溫度會比之前還高 溫度的測試已經不用多此一舉了!